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We discuss the long-range spectral correlations in random matrices. Their universality for one-band spectra
and its breakdown for multiband spectra are investigated and characterized. The long-range properties are
complementary to the usual short-range properties, and are important for conductance fluctuations in meso-
scopic systems. However, unlike short-range properties, they are not ubiquitous in model quantum-chaotic
systems. We formulate a system of multiply-kicked quantum rotors, and show that it exhibits both long-range
and short-range correlations.
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I. INTRODUCTION

Random-matrix theory has had great success in explain-
ing energy-level fluctuations in complex quantum systems.
Typical applications include complex nuclei, atoms and mol-
ecules, model quantum-chaotic systemsse.g., billiards,
coupled nonlinear oscillators, kicked rotors, and topsd, mi-
crowave cavities, etc.f1–5g. More recently, attention has
turned to glasses and amorphous clustersf6g. Another set of
studiesf7,8g has focused on conductance fluctuations in me-
soscopic systems where random-matrix theory has again pro-
vided a strong basis for universality.

The study of energy-level fluctuations is based on quanti-
ties such as spacing distribution, number variance, etc. These
involve correlations on the scale of the level spacing, and we
shall refer to these properties aslocal or short-range. In con-
trast, conductance derives from the sum of all transmission
eigenvalues and the corresponding fluctuations areglobal or
long-rangeproperties.

Many model quantum-chaotic systems are known to dis-
play short-range properties consistent with random-matrix
theory. With regard to long-range properties, there have been
studies focusing on conductance fluctuations in cavitiesf7,9g
and kicked rotorsf10g. To the best of our knowledge, there is
no direct study of the long-range extensions of number vari-
ance and the two-point correlation function. In this article,
we explore long-range spectral properties in random-matrix
models and the extent of their universality. Further, we con-
sider a model quantum-chaotic system where both short-
range and long-range spectral correlations areexplicitly real-
ized. An important observation in this context is that
long-range properties are not as universal as short-range
properties.

This paper is organized as follows. In Sec. II, we discuss
the long-range correlations in spectra of non-Gaussian
random-matrix ensembles and their significance for universal
conductance fluctuationssUCFd. We focus on spectra which
exhibit one-band and two-band structures and we illustrate
our results via Monte CarlosMCd simulations of ensembles
with quartic potentials. In Sec. III, we discuss the long-range
correlations for circular ensembles. In this context, we also
discuss ensembles with weak periodic potentials. A system of
multiply-kicked rotors is introduced in Sec. IV and shown to
exhibit both short-range and long-range properties of circular

ensembles. The well-known UCF result for single-band spec-
tra is also confirmed. The results are summarized in Sec V.

II. NON-GAUSSIAN RANDOM-MATRIX ENSEMBLES

In this section, we consider random-matrix ensembles
with the following probability density for eigenvalues
x1,x2,… ,xN f11,12g:

Psx1,…,xNd = cp
j.k

uxj − xkubp
l

e−bNVsxld. s1d

Here, c is the normalization constant, andN is the matrix
dimension. The parameterb refers to the invariance proper-
ties of the ensembles with values 1, 2, and 4 denoting or-
thogonal, unitary, and symplectic cases, respectively. The
weight function is defined in terms of the potentialVsxd; the
factor bN in the exponent results in the normalized eigen-
value density being independent ofb andN f12g. In earlier
studiesf11,12g, we have focused on the eigenvalue density
and short-range fluctuations of the ensembles ins1d with
non-Gaussianpotentials.

The starting point for our study of long-range correlations
is the two-point functionf1g:

S2sx,yd = dsx − ydR1sxd + R2sx,yd − R1sxdR1syd, s2d

whereRn aren-level correlation functions:

Rnsx1,…,xnd =
N!

sN − nd! E dxn+1…E dxNPsx1,…,xNd.

s3d

The physically relevant quantities for studies of long-range
fluctuations are the moments ofS2sx,yd, defined asswith
p,q=0,1,2,…d f1g

Cpq =E E xpyqS2sx,yddx dy= MpMq − M̄pM̄q. s4d

Here, in the second step,Mp=Tr Hp with H being the corre-
sponding random matrix, and the bar denotes an ensemble
average over the probability density ofH ,PsHd
~expf−bN Tr VsHdg. A large class of potentials gives rise to
level densitiessR1d with one-band structuref12g for N→`.
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Without loss of generality, we consider a single band with
supportf−A,Ag. For such cases, a remarkable result emerges:

Cpq =
2

b
SA

2
Dp+q

o
z.0

8z 1 p

p − z

2
21 q

q − z

2
2 , s5d

valid for p+q=evensCpq=0 for p+q=oddd. The sum ins5d is
restricted toz such thatp−z=even. We have obtained this
result directly from the polynomial methodf11g. In analogy
with the binary-correlation treatment of Gaussian ensembles
f1,13g, s5d can be interpreted as an expansion in the number
szd of H’s correlated pairwise between the traces ofHp and
Hq. We ignore OsN−1d corrections ins5d and related results
below. These are needed to describe short-range fluctuations.
We also remark that theMp become Gaussian variables for
p!N.

Inverting the moments ins5d, we obtain the corresponding
two-point function:

S2sx,yd =
2

b
gsxdgsydo

z.0
zvzsxdvzsyd, s6d

where gsxd=spA sinud−1, x=A cosu , 0øuøp, and vzsxd
=cosszud. The sum ins6d is formally done using a cutoff and
the result is

S2sx,yd = −
sA2 − xyd

bp2sx − yd2ÎsA2 − x2dsA2 − y2d
. s7d

The results ins5d–s7d were first obtained in the context of
Gaussian ensemblesfVsxd=x2/2g f1,13g. In recent work,s7d
has been established for a wide class of non-Gaussian en-
sembles with one-band spectraf7,14–16g.

Potentials with multiple minimase.g., quartic potential,
cosine potential, several infinite wells, etc.d admit the possi-
bility of spectra with multiple bandsf12,15g. Short-range
fluctuations are not affected by the banding. However, for
n-band spectrasn.1d, s5d is no longer valid. The appropri-
ate generalization consists ofn branches corresponding to
distinct values ofNsmodnd. For illustration, consider the
case of two symmetric bands with supportf−A,−Bg and
fB,Ag. Using the labels +/− forN=odd/even, respectively,
we get the following result forp+q=even:

Cpq
± = FC11

± −
sA ± Bd2

2b
Gl0

p−1l0
q−1 +

1

b
o
z.0

8fsz + 1dlz
ps±dlz

qs±d

+ sz − 1dlz
ps7dlz

qs7dg. s8d

Here, forp,z=even,

lz
ps+ d = lz

ps− d =
1

p
E

0

p

xpcoszu du,

2x2 = sA2 + B2d + sA2 − B2dcos 2u, s9d

while, for p,z=odd,

2lz
ps±d = sA ± Bdlz−1

p−1 + sA 7 Bdlz+1
p−1. s10d

For p+z=odd,lz
ps±d=0. Inverting the moments as ins6d and

summing the series, we obtain the corresponding two-point
function f15g:

S2
±sx,yd = −

esxyd
bp2ÎsA2 − x2dsx2 − B2dsA2 − y2dsy2 − B2d

3 F sA2 − xydsxy− B2d
sx − yd2 +

A2 + B2

2
− bC11

± G ,

s11d

whereestd= t / utu. For b=2,C11
± =sA±Bd2/4. Our MC results

discussed below suggest thatC11
± =sA2±B2d /2 for b=1 and

fsA+B±ÎABd2−ABg /8 for b=4. We stress that, forB=0
sone-band cased, s8d reduces tos5d and s11d reduces tos7d,
sinceC11

± =A2/2b in this limit.
In Ref. f12g we have described a MC procedure for gen-

erating non-Gaussian ensembles. We have used this method
to study the level density and universality of short-range
fluctuations for a large class of weight functions which ex-
hibit multiband behavior. For long-range properties such as
Cpq, we need to generate a much larger number of indepen-
dent spectra than in our earlier work. We have done an ex-
tensive MC study of long-range correlations in ensembles
with quartic potentialVsxd=sx4−2ax2d /4, which show a
one-band→two-band transition in the spectrum ata=Î2; see
Eqs. s14d and s15d of Ref. f12g. For the one-band casesa
,Î2d, the band parameter isA=Îs2/3dfsa2+6d1/2+ag. For
the two-band casesa.Î2d, the band parameters areA
=Îa+Î2,B=Îa−Î2. We have computed low-orderCpq’s
and confirmed the validity ofs5d and s8d. Our studies were
done for a wide range ofsa ,bd values. In each case, we
generated 50 000 spectra forN=200, 201, and 10 000 spec-
tra for N=400,401. These spectra were spaced apart by 100
MC steps.

Figures 1sad and 1sbd plot C11 vs b for a=0, 2, andC11 vs
a for b=1,2,4—both forN=200,201. sThe results forN

FIG. 1. MC results forC11 vs sad b for a=0 sone-band cased, 2
stwo-band cased, andsbd a for b=1,2,4. For eachsa ,bd value, we
use identical symbols for systems of sizeN=200,201. The solid
lines denote analytical results forC11; see discussion afters11d.
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=400,401 are similar.d The solid lines superposed on the data
sets are the above analytical expressions forC11. To estimate
sample errors in our calculations, we computed the autocor-
relation function of the first momentM1. The correlation
decays to half its maximum value on a time scale which
depends ona ,b and is of the order of 100–500 MC steps.
Therefore the relative sample error in Fig. 1 is about 1%.

Finally, let us discuss the relevance of the quantitiesCpq
in quantum transport problems. The conductance is propor-
tional to g=oTj where Tj P f0,1g are eigenvalues of the
N3N transmission matrixT,N being the number of chan-
nels. For largeN, we identifysH+Ad / s2Ad as a transmission
matrix with eigenvaluesTj =sxj +Ad / s2Ad. Then the variance
of conductance fluctuations is

varsgd = C11/s4A2d, s12d

yielding the universal results8bd−1 for one-band spectra
f7,16g. One can similarly obtain variances of other physical
quantities froms5d. This universality breaks down at the on-
set of band-splitting, e.g., for the two-band case, conductance
fluctuations become dependent on the ratiosB/Ad and ex-
hibit a strong odd-even effect withN fsees8d and the subse-
quent discussiong. The one-band result has been obtained
earlier by different approaches and used to describe conduc-
tance fluctuations in quantum dots, e.g., chaotic cavities.
However, the corresponding two-point correlation function
s7d and the resultant number variance have not been explic-
itly demonstrated in model quantum-chaotic systems. To test
these properties, we turn next to quantum maps and their
random-matrix models.

III. CIRCULAR ENSEMBLES

We consider theslarge-Nd two-point correlation function
for circular ensembles of unitary matrices, which are appro-
priate for quantum maps, and scatteringsor transportd prob-
lems. In this case, the probability density for the eigenangles
su1,u2,… ,uNd is

Psu1,…,uNd = cp
j.k

ueiu j − eiukubp
l

e−bVsuld, s13d

wherec is the appropriate normalization constant, andVsud
is now a periodic potential. Let us first obtain the results for
the potential-free casefVsud=0g, where the level-density
R1sud=N/ s2pd. In this case, Dyson has given correlation
functions of all orders for finiteN f3,17g. Using these results,
we obtain the quantitiesCpq andS2su ,fd correct toOsN−1d:

Cpq ; E
0

2p E
0

2p

eipueiqfS2su,fddu df

= 2b−1upudp+q,0, p,q = 0, ± 1, ± 2,…, s14d

S2su,fd =
1

2p2b
o

z=−`

`

uzueizc = −
1

4p2b sin2sc/2d
, s15d

where c=u−f. As before, the final expression ins15d is
obtained by performing the sum with a cutoff.

We stress thats14d is valid for upu , uqu!N; with larger
supu , uqud-values,Cpq safter suitable rescalingd gives the form
factor for the short-range fluctuations. For calculation of the
number variance below, we need the exactCpq, which are
nonzero only forp+q=0. Forb=2, we have

Cp,−p = upu, upu ø N,

= N, upu ù N. s16d

For b=1, we have

Cp,−p = 2upu − upu o
m=N8−upu+1

N8
1

m + upu
, upu ø N,

= 2N − upu o
m=−N8

N8
1

m + upu
, upu ù N, s17d

whereN8=sN−1d /2. Finally, we have forb=4,

Cp,−p =
upu
2

+
upu
4 o

m=N−upu+s1/ 2d

N−s1/ 2d
1

m
, upu ø 2N,

= N, upu ù 2N. s18d

A useful quantity to describe fluctuations is the number
varianceo2srd, viz, variance of the number of eigenangles in
intervals of lengths2pr /Nd. In terms ofCpq, this is

S2srd = o
p=−`

`

Cp,−p
sin2sppr/Nd

sppd2 . s19d

Note thatS2srd=S2sN−rd. The short-range results are de-
rived by replacing the sums ins19d by integrals, whereby the
results become independent ofN. However, for larger values
of r, we need to deal with the sum directly. Usings16d–s18d
in s19d, we obtain large-N circular-ensemble results forS2srd
in compact forms, valid for both short and long range. We
have, for 1& r &N−1,

S2srd =
1

p2flnsr̃d + g + 1g, b = 2,

=
2

p2Flnsr̃d + g + 1 −
p2

8
G, b = 1,

=
1

2p2Flns2r̃d + g + 1 +
p2

8
G, b = 4, s20d

where r̃ =2N sinspr /Nd, and g is the Euler constant. Note
that r̃ =2pr for r !N. Thus, Eq.s20d generalizes the earlier
short-range resultsf1g.

The above results are also applicable to ensembles with
Vsud=Os1d. fThis should be contrasted with the caseVsud
=OsNd, where spectra may appear in bands.g In these cases,
the level density R1sud=N/ s2pd+Os1d-corrections. For
short-range correlations, the first term is adequate for the
unfolding of the spectra. However, for long-range correla-
tions, it turns out that theOs1d correction is also needed to
effect proper unfolding of the spectra. Forb=2, we have
explicitly computed then-level correlation functionsRn us-
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ing appropriate orthogonal polynomials on the unit circle.
These exhibitsafter proper unfoldingd both long-range and
short-range universalities. The corresponding calculation for
b=1,4 requires skew-orthogonal polynomials on the unit
circle. We have carried out MC studies of these ensembles
for several potentials, and confirmed the universality of the
number variance ins20d. The details of this work will be
published elsewheref18g.

IV. MULTIPLY-KICKED ROTORS

We now turn to quantum-chaotic systems where the long-
range properties may be realized. We study systems in the
kicked-rotor familyf19,20g and clarify when long-range uni-
versality is realized. Consider quantum maps in an
N-dimensional Hilbert space generated by the time-evolution
operatorU of a kicked rotor with torus boundary conditions.
The standard casef19,20g is that of a singly-kicked rotor
with U=BG, where B;Bsad=expf−ia cossu+u0d /"g and
G=expf−isp+gd2/2"g with u ,p being the position and mo-
mentum operators. Here,a is the kicking parameter,u0 is the
parity-breaking parameter, andg is the time-reversal-
breaking parameters0øg,1d. In the position representation

Bmn= expF− i
a

"
cosS2pm

N
+ u0DGdmn, s21d

Gmn=
1

N
o

l=−N8

N8

expF− iS"

2
l2 − gl −

2pml

N
DG , s22d

where m=m−n,m,n=−N8 ,−N8+1,… ,N8 ,N8=sN−1d /2
and we set"=1. One knowsf19,20g that, when parity is
broken,su0Þ0d andN,a are sufficiently largeswith a@Nd;
the eigenvalue spectrum ofU accurately exhibits short-range
random-matrix fluctuationsse.g., spacing distribution, num-
ber varianced. These are characteristic of theb=1 case for
g=0 andb=2 case forgÞ0. We have confirmed this for
samples of 50 000 matrices withN=101,201, u0
=p / s2Nd ,g=0.9, where independent matrices are generated
by setting a= ja0 with a0=20 000 and j =1,2,…,50 000.
However, we find that the long-range quantitiesCpq sfor
upu , uqu!Nd disagree with the circular-ensemble result ins14d
ssee Fig. 2d. This is a direct consequence of the absence of
theuniformity principleof periodic orbitsswith low periodsd
in the corresponding semiclassical theoryf20,21g.

We therefore study a multiply-kicked rotor withM kicks:
Us2d=Bsa1dGBsa2dG…BsaMdG where theak are spaced far
apart; we chooseak=s jM +kda0, wherek=1,… ,M, and the
index j labels independent spectra as above. We find that the
universal long-range results forb=2 are realized when
M ù5 for g=0.9 ssee Fig. 2 forM =10d. It is interesting
to note that Us2d for g=0 also yields theb=2 results
because the product is not symmetric. Theb=1 results
are recovered for the symmetric productUs1d

=Bsa1dG…BsaMdGBsaM−1dG…Bsa1dG; Fig. 2 also shows
results for this product withM =10. The short-range fluctua-
tions are not affected by the product operations described
above. This should be contrasted with the operator

U=sBGdM, which gives universal long-range properties but
not the short-range properties.

For an accurate demonstration of the long-range proper-
ties in quantum-chaotic maps, we consider the number vari-
anceo2srd. For the kicked-rotor spectra,o2 is calculated by
considering all intervalsf2pk/N,2psk+rd /N mods2pdg with
k=0,1,… ,N−1. Figure 3 shows that the results forM =10
agree extremely well with the circular-ensemble predictions;
the sample errors are very smalls& 0.5% for r <N/2d. The
M =1 results show departures which become much larger
and nonstationarysnot shown in the figured if only one value
of k is chosen in the calculations. We have also analyzed the
spectra forM =3,5; these show much smaller departures
from the long-range theory than theM =1 case. Finally, we
recall f3,22g that alternate eigenangles of theseven-

FIG. 2. Cp,−p vs p for kicked-rotor spectrasN=201,g=0,0.9d for
sad M =1 andsbd M =10. The solid lines correspond tos14d for b
=1,2. The insets show the corresponding data for 0øpø600, with
solid lines denoting the analytical results ins16d and s17d. Notice
that the disagreement between data for the singly-kickedsM =1d
rotor and random-matrix predictions disappears at high values ofp.

FIG. 3. o2srd vs r for N=201,M =1,10, andsad g=0, sbd g
=0.9. The solid lines insad, sbd correspond to the circular-ensemble
results20d with b=1,2 respectively. The dashed lines correspond to
the short-range theory, viz,r̃ =2pr in s20d.
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dimensionald b=1 circular ensemble have the same statistics
as that of theb=4 ensemble. We have confirmed the validity
of this for multiply-kicked rotors.

It is natural to describe quantum transport via scattering
matricesssay,Ud which are modeled by circular ensembles.
Then the conductance is given byg=om,nuUmnu2 with m
=1,2,… ,N1 and n=N1+1,… ,N, where N1 and N2s=N
−N1d are, respectively, the number of incoming and outgoing
channels. The circular-ensemble prediction for its variance is
swith h=2/bd

varsgd =
hN1N2sN1 − 1 +hdsN2 − 1 +hd

sN − 2 +hdsN − 1 + 2hdsN − 1 +hd2 , s23d

which yields the above results8bd−1 for N1=N2@1; seef7g,
and references therein. We have verifieds23d for multiply-
kicked rotor operatorsG1/2Us1dG−1/2 andUs2d with both large
and small number of channelsN. However, for small values
of N sù3 for kicked rotorsd, the number of kicks needed for
good agreement is higherse.g., M =50d. Our kicked-rotor
calculations, along with earlier workf9,10g, thus provide a

firm basis for the utility ofs23d in experiments on quantum
dots.

V. CONCLUSION

We have studied the theory of long-range spectral fluctua-
tions in random-matrix ensembles. We have elucidated the
extent of universality for one-band and multiple-band spec-
tra, and its relevance for conductance fluctuations. Further,
we have explored the analogous long-range correlations in
the eigenvalue spectra of circular ensembles and quantum-
kicked rotors. We find that singly-kicked rotors do not ex-
hibit universal long-range correlations. However, in
multiply-kicked rotors, akin to multiple scattering in quan-
tum transport problems, universal long-range correlations are
recovered. In these systems, the circular-ensemble predic-
tions for conductance fluctuations are explicitly verified for
both the small and large number of channels.

ACKNOWLEDGMENT

S.K. thanks CSIR, India for financial support.

f1g T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey,
and S. S. M. Wong, Rev. Mod. Phys.53, 385 s1981d.

f2g O. Bohigas and M. J. Giannoni, Lect. Notes Phys.209, 1
s1984d.

f3g M. L. Mehta,Random MatricessAcademic, New York, 1991d.
f4g T. Guhr, A. M. Groeling, and H. A. Weidenmuller, Phys. Rep.

299, 189 s1998d.
f5g F. Haake,Quantum Signatures of ChaossSpringer, Berlin,

1991d.
f6g S. K. Sarkar, G. S. Matharoo, and A. Pandey, Phys. Rev. Lett.

92, 215503s2004d.
f7g C. W. J. Beenakker, Rev. Mod. Phys.69, 731 s1997d.
f8g Y. Alhassid, Rev. Mod. Phys.72, 895 s2000d.
f9g H. U. Baranger and P. A. Mello, Phys. Rev. Lett.73, 142

s1994d.
f10g J. Tworzydlo, A. Tajic, and C. W. J. Beenakker, Phys. Rev. B

70, 205324s2004d; Ph. Jacquod and E. V. Sukhorukov, Phys.
Rev. Lett. 92, 116801s2004d.

f11g A. Pandey and S. Ghosh, Phys. Rev. Lett.87, 024102s2001d;

S. Ghosh and A. Pandey, Phys. Rev. E65, 046221s2002d.
f12g S. Ghosh, A. Pandey, S. Puri, and R. Saha, Phys. Rev. E67,

025201sRd s2003d.
f13g K. K. Mon and J. B. French, Ann. Phys.sN.Y.d 95, 90 s1975d;

J. B. French, P. A. Mello, and A. Pandey,ibid. 113, 277
s1978d.

f14g E. Brezin and A. Zee, Nucl. Phys. B402, 613 s1993d.
f15g E. Brezin and N. Deo, Phys. Rev. E59, 3901s1999d; N. Deo,

Nucl. Phys. B504, 609 s1997d.
f16g C. W. J. Beenakker, Phys. Rev. Lett.70, 1155s1993d.
f17g F. J. Dyson, J. Math. Phys.3, 166 s1962d.
f18g S. Kumar and A. Pandeysunpublishedd.
f19g F. M. Izrailev, Phys. Rev. Lett.56, 541 s1986d.
f20g A. Pandey, R. Ramaswamy, and P. Shukla, Pramana41, L75

s1993d; P. Shukla and A. Pandey, Nonlinearity10, 979s1997d.
f21g J. Hannay and A. M. O. de Almeida, J. Phys. A17, 3429

s1984d; M. V. Berry, Proc. R. Soc. London, Ser. A400, 299
s1985d.

f22g M. L. Mehta and A. Pandey, J. Phys. A30, 1243s1997d.

LONG-RANGE CORRELATIONS IN QUANTUM-CHAOTIC… PHYSICAL REVIEW E 71, 066210s2005d

066210-5


