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Long-range correlations in quantum-chaotic spectra
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We discuss the long-range spectral correlations in random matrices. Their universality for one-band spectra
and its breakdown for multiband spectra are investigated and characterized. The long-range properties are
complementary to the usual short-range properties, and are important for conductance fluctuations in meso-
scopic systems. However, unlike short-range properties, they are not ubiquitous in model quantum-chaotic
systems. We formulate a system of multiply-kicked quantum rotors, and show that it exhibits both long-range
and short-range correlations.
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I. INTRODUCTION ensembles. The well-known UCF result for single-band spec-

Random-matrix theory has had great success in explaint-ra is also confirmed. The results are summarized in Sec V.
ing energy-level fluctuations in complex quantum systems.

Typical applications include complex nuclei, atoms and mol- || NON-GAUSSIAN RANDOM-MATRIX ENSEMBLES
ecules, model quantum-chaotic systerfe.g., billiards, _ . . _
coupled nonlinear oscillators, kicked rotors, and jomsi- In this section, we consider random-matrix ensembles

crowave cavities, etc[1-5]. More recently, attention has with the following probability density for eigenvalues
turned to glasses and amorphous clusféisAnother set of  X;,Xp, ..., Xy [11,12:

studies[7,8] has focused on conductance fluctuations in me-

soscopic systems where random-matrix theory has again pro- P(xq, ..., %) = ] T [x; = xJFT ] PNV, (1)
vided a strong basis for universality. 1=k :

The study of energy-level fluctuations is based on quantiHere, ¢ is the normalization constant, ardl is the matrix
ties such as spacing distribution, number variance, etc. Thesfimension. The parametgt refers to the invariance proper-
involve correlations on the scale of the level spacing, and weies of the ensembles with values 1, 2, and 4 denoting or-
shall refer to these properties lasal or short-range In con-  thogonal, unitary, and symplectic cases, respectively. The
trast, conductance derives from the sum of all transmissiofyeight function is defined in terms of the potentié); the
eigenvalues and the corresponding fluctuationsgéobal or  factor AN in the exponent results in the normalized eigen-
long-rangeproperties. ) _ value density being independent gfandN [12]. In earlier

Many model quantum-chaotic systems are known to disstydies[11,12, we have focused on the eigenvalue density
play short-range properties consistent with random-matrgng short-range fluctuations of the ensembleg1inwith
theory. With regard to long-range properties, there have beefon-Gaussiarpotentials.
studies focusing on conductance fluctuations in cavified The starting point for our study of long-range correlations
and kicked rotor$10]. To the best of our knowledge, there is s the two-point functiorf1]:
no direct study of the long-range extensions of number vari-
ance and the two-point correlation function. In this article, S(xYy) = sx = y)Ri(X) + Ry(x,y) = Ri(¥)Ry(y),  (2)

we explore long-range spectral properties in random-matrb\svhereRn aren-level correlation functions:
models and the extent of their universality. Further, we con- ’

sider a model quantum-chaotic system where both short- N!

range and long-range spectral correlationsexqglicitly real- Ra(Xq, .., %0) = N-m) AXgageee [ AXGPXg, oo X))

ized. An important observation in this context is that ’

long-range properties are not as universal as short-range 3
properties. The physically relevant quantities for studies of long-range

This paper is organized as follows. In Sec. Il, we discuss,ctuations are the moments &(x,y), defined as(with
the long-range correlations in spectra of non-GaussiarE, q=0,1,2,..) [1]

random-matrix ensembles and their significance for universal

conductance fluctuation®JCF). We focus on spectra which - — —

exhibit one-band and two-band structures and we illustrate Cpq:f f XYIS(x,y)dx dy=MMq - MpMg.  (4)

our results via Monte Carl@C) simulations of ensembles

with quartic potentials. In Sec. Ill, we discuss the long-range-ere, in the second step},=Tr HP with H being the corre-
correlations for circular ensembles. In this context, we alsgponding random matrix, and the bar denotes an ensemble
discuss ensembles with weak periodic potentials. A system giverage over the probability density ofH,P(H)
multiply-kicked rotors is introduced in Sec. IV and shown to <exd—BN Tr V(H)]. A large class of potentials gives rise to
exhibit both short-range and long-range properties of circulatevel densitiegR;) with one-band structurgl2] for N— co.
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Without loss of generality, we consider a single band with (a) l .
supporf—A,A]. For such cases, a remarkable result emerges AR .

Mo

QR

p q

2( A p+q ,
Cpq=—<—) X'elp-¢|la-¢ |, (5)
p\2) S\ N\

C,,(op)

valid for p+g=even(Cp,=0 for p+g=0dd. The sum in(5) is
restricted to{ such thatp—¢=even. We have obtained this
result directly from the polynomial methdd1]. In analogy
with the binary-correlation treatment of Gaussian ensembles
[1,13], (5) can be interpreted as an expansion in the numbet
(¢) of H's correlated pairwise between the tracesH8fand 0% > 4
HY. We ignore @N™1) corrections in(5) and related results B o
below. These are needed to describe short-range fluctuations.
We also remark that thil, become Gaussian variables for
p<<N.

Inverting the moments if6), we obtain the corresponding
two-point function:

FIG. 1. MC results forCy4 vs (a) B for =0 (one-band cage?2
(two-band casg and(b) « for g=1,2,4. For eaclia, 8) value, we
use identical symbols for systems of sike=200,201. The solid
lines denote analytical results f@4; see discussion aftgf1).

2 p = p-1 — p-1
S0Y) = 29009 S do, v ly), (®) AL =ALBR AT BN (10
B >0 For p+§:odd)\§’(i):0. Inverting the moments as {i6) and
where g(x)=(mAsin §), x=Acosf, 0< <, and v (x) ?ﬁﬂgg%gﬂe series, we obtain the corresponding two-point
=cog¢6). The sum in(6) is formally done using a cutoff and '
the result is . €e(xy)
Sxy) =- A2 22 RA(A2 22 R2
(AZ=xy) BV (A% - x2)(x* - B (A* - y?)(y* - BY)
TN T N x| B Oy= B) AABT BCE,
(x-y) 2 ’
The results in(5)—7) were first obtained in the context of (11)

Gaussian ensembl@¥(x)=x?/2] [1,13]. In recent work,7)
has been established for a wide class of non-Gaussian ewhere e(t)=t/|t|. For 3=2,C;;=(A+B)?/4. Our MC results
sembles with one-band specfia14-18. discussed below suggest thaf,=(A2+B?)/2 for =1 and
Potentials with multiple minimde.g., quartic potential, [(A+B+ \EE)Z—AB]/S for B=4. We stress that, foB=0
cosine potential, several infinite wells, gtadmit the possi- (one-band case (8) reduces ta5) and (11) reduces ta7),
bility of spectra with multiple band$12,15. Short-range sinceCt,=A2/2p in this limit.
fluctuations are not affected by the banding. However, for |n Ref. [12] we have described a MC procedure for gen-
n-band spectrén>1), (5) is no longer valid. The appropri- erating non-Gaussian ensembles. We have used this method
ate generalization consists af branches corresponding to to study the level density and universality of short-range
distinct values ofN(modn). For illustration, consider the flyctuations for a large class of weight functions which ex-
case of two symmetric bands with supp¢#A,-B] and  hibit multiband behavior. For long-range properties such as
[B,A]. Using the labels +/- foN=odd/even, respectively, C,, we need to generate a much larger number of indepen-
we get the following result fop+g=even: dent spectra than in our earlier work. We have done an ex-
tensive MC study of long-range correlations in ensembles
(A+B)? with quartic potentialV(x) =(x*-2ax?)/4, which show a
28 one-band-two-band transition in the spectrumat \2; see
Egs. (14) and (15) of Ref. [12]. For the one-band cader
+ (L= DN(F)NYF)]. (8 <\2), the band parameter &=1/(2/3)[(a?+6)*+a]. For
the two-band casda>\2), the band parameters awk
=\Va+\2,B=\Ja-y2. We have computed low-ordeZ,,s
1 (" and confirmed the validity of5) and (8). Our studies were
)\E(+):)\§(—):—j xPcos{o dé, done for a wide range ofa,B) values. In each case, we
TJo generated 50 000 spectra fde=200, 201, and 10 000 spec-
tra for N=400,401. These spectra were spaced apart by 100
2x% = (A?+B?) + (A>- B?)cos &, (99  MC steps.
Figures 1a) and 1b) plot C;; vs 8 for =0, 2, andC;; VS
while, for p,{=o0dd, a for B=1,2,4—both forN=200,201.(The results forN

MG+ S ST+ DN

+ +
Coa= {Cll -
>0

Here, forp, {=even,
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=400,401 are similarThe solid lines superposed on the data We stress thatl14) is valid for |p|,|g|<N; with larger
sets are the above analytical expressionsXar To estimate  (|p|,|q|)-values,Cy, (after suitable rescalingives the form
sample errors in our calculations, we computed the autocoffactor for the short-range fluctuations. For calculation of the
relation function of the first momen¥;. The correlation number variance below, we need the ex@gt, which are
decays to half its maximum value on a time scale whichnonzero only forp+q=0. For 3=2, we have
depends orw, 8 and is of the order of 100-500 MC steps.
Therefore the relative sample error in Fig. 1 is about 1%. Copp= bl =N,

Finally, let us discuss the relevance of the quantiGgg =N, |p/|=N. (16)
in quantum transport problems. The conductance is propor-
tional to g=2T; where T; €[0,1] are eigenvalues of the For g=1, we have

NX N transmission matrix,N being the number of chan- NG
nels. For largeN, we identify (H+A)/(2A) as a transmission C,_,=2lp|-|p| 2 —— Ipl=N,
matrix with eigenvalued;=(x;+A)/(2A). Then the variance PP u=N'—Jpj+1 M +p|
of conductance fluctuations is N
var(g) = Cy4/(4A%), (12 =2N-1|p| X p«+|pl' Ip| =N, (17

yielding the universal result8B)™* for one-band spectra =N’

[7,16]. One can similarly obtain variances of other physicalwhereN’=(N-1)/2. Finally, we have foi3=4,
quantities from(5). This universality breaks down at the on-

set of band-splitting, e.g., for the two-band case, conductance ol |pl N-(1/2)

fluctuations become dependent on the rdBdA) and ex- PP~ ) +Z > ; Pl < 2N,

hibit a strong odd-even effect witK [see(8) and the subse- w=N-lpl+(1/2)

quent discussiopn The one-band result has been obtained =N, |p/|=2N. (18)

earlier by different approaches and used to describe conduc- , i i i
tance fluctuations in quantum dots, e.g., chaotic cavities. “ USeful quantity to describe fluctuations is the number

However, the corresponding two-point correlation functionya”ancezz(r)' viz, variance of the number of eigenangles in
(7) and the resultant number variance have not been expliddtervals of length2zr/N). In terms ofC,, this is

itly demonstrated in model quantum-chaotic systems. To test % siré(mpr/N)
these properties, we turn next to quantum maps and their EOE Cp _prz (19
random-matrix models. pee (7P

Note that3%(r)=32(N-r). The short-range results are de-
Ill. CIRCULAR ENSEMBLES rived by replacing the sums i19) by integrals, whereby the
. . . . results become independentdf However, for larger values
We consider thdlargeN) two-point correlation function of r, we need to deal with the sum directly. Usiti)—(18)

fo_r circular ensembles of unitary matr?ces, which are appro;, (19), we obtain largeN circular-ensemble results f&(r)
priate for guantum maps, and_ _scatter(l_mg transpod_ prob- in compact forms, valid for both short and long range. We
lems. In this case, the probability density for the elgenangleﬁave for I=r=N—-1

(01, 02, ey HN) IS
1
P(6y,....60) =cl ] |€%-We[ eV (13 33(r) = ;[IH(F) +y+1], B=2,
>k [
. . o 2 [ ﬂi]
wherec is the appropriate normalization constant, afd) ==|InMO+y+1-—1, B=1,
is now a periodic potential. Let us first obtain the results for Ls 8

the potential-free casg@V(#)=0], where the level-density 1 .
R.(6)=N/(2m). In this case, Dyson has given correlation =52 |n(ﬁ)+7+1+§ , B=4, (20
functions of all orders for finité\ [3,17]. Using these results,
we obtain the quantitie€,, andS,(6, ¢) correct toO(N™):  whereT=2Nsin(zr/N), and y is the Euler constant. Note
o or tk;}at?szr for rf{é\lﬂ Thus, Eq.(20) generalizes the earlier
— ipOaiqd short-range resull].

Coa= JO 0 eret*S(6,4)dd dé The above results are also applicable to ensembles with
V(6)=0(1). [This should be contrasted with the cagg)
=0(N), where spectra may appear in bands.these cases,
the level density Ri(#)=N/(2m7)+0O(1)-corrections. For

1 - ity _ 1 short-range correlations, the first term is adequate for the
S(6,¢) = m; _E |fle’= _m' (15 unfolding of the spectra. However, for long-range correla-
e tions, it turns out that th€(1) correction is also needed to
where =60-¢. As before, the final expression 15 is effect proper unfolding of the spectra. FB=2, we have
obtained by performing the sum with a cutoff. explicitly computed then-level correlation function®, us-

:2:8_1|p|5p+q,01 piqzoi il! i27"'1 (14)
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ing appropriate orthogonal polynomials on the unit circle. 12{a) N=201, M=1
These exhibit(after proper unfolding both long-range and : V{gg
short-range universalities. The corresponding calculation for _ 8] — mheony
B=1,4 requires skew-orthogonal polynomials on the unit O S
circle. We have carried out MC studies of these ensembles al ek
for several potentials, and confirmed the universality of the o s
number variance i20). The details of this work will be 0 . : ‘;u 200 0o
published elsewhergl 8]. 12[(b) N=201, M=10 1
IV. MULTIPLY-KICKED ROTORS 28_
&}

We now turn to quantum-chaotic systems where the long- 4t ?::
range properties may be realized. We study systems in the \
kicked-rotor family[19,20 and clarify when long-range uni- 0 s - 200 40 6
versality is realized. Consider quantum maps in an o2 4 P 6 8 10

N-dimensional Hilbert space generated by the time-evolution

operatorU of a kicked rotor with torus boundary conditions. ~ FIG. 2. C, _, vs p for kicked-rotor spectr&N=201,y=0,0.9 for
The standard casgl9,20 is that of a singly-kicked rotor (& M=1 and(b) M=10. The solid lines correspond {a4) for g
with U=BG, where B=B(a)=exd-ia cog6+6)/#] and =1.2. The insets_show the corr_esponding data ferp=< 600, with
G:exp:—i(p+y)2/2ﬁ] with ,p being the position and mo- solid Ilnes_denotlng the analytical results (ib6) a_nd (17)_. Notice
mentum operators. Here,is the kicking parametefy, is the ~ that the disagreement between data for the singly-kiditet 1)
parity-breaking parameter, and is the time-reversal- rotor and random-matrix predictions disappears at high valugs of

breaking parametdf=< y<1). In the position representation U=(BG)M, which gives universal long-range properties but

a 2m not the short-range properties.
Bmn=€xp — '%COS(T + 90) Srmns (21 For an accurate demonstration of the long-range proper-
ties in quantum-chaotic maps, we consider the number vari-
. anceX?(r). For the kicked-rotor spectrg;? is calculated by
1 [, 27 ul considering all intervalp27k/N, 27r(k+r)/N mod27)] with
Gmn= 2 exp -1 "=—" /" (@2 k=0,1,..,N-1. Figure 3 shows that the results flor=10
=N agree extremely well with the circular-ensemble predictions;
where  u=m-n,m,n=-N’,-N’'+1,...,N’,N'=(N-1)/2  the sample errors are very smé# 0.5% forr~N/2). The
and we seti=1. One knows[19,2Q that, when parity is M=1 results show departures which become much larger
broken, (6, # 0) andN, @ are sufficiently largéwith a>N); ~ and nonstationargnot shown in the figureif only one value
the eigenvalue spectrum bf accurately exhibits short-range Of kis chosen in the calculations. We have also analyzed the
random-matrix fluctuationge.g., spacing distribution, num- Spectra forM=3,5; these show much smaller departures
ber varianck These are characteristic of ti=1 case for ~from the long-range theory than té=1 case. Finally, we
y=0 and8=2 case fory+0. We have confirmed this for recall [3,22] that alternate eigenangles of theven-
samples of 50000 matrices withN=101,201, 6,

T T

=x/(2N),y=0.9, where independent matrices are generated 1 4|(@) N=201,3=0,0° .
by setting a=jay with «;=20000 andj=1,2,..,50 000. p <
However, we find that the long-range quantiti€g, (for - L2r i
Ip|,|g| < N) disagree with the circular-ensemble resul{id) ook i
(see Fig. 2 This is a direct consequence of the absence of . Mol
the uniformity principleof periodic orbits(with low periods 08 T e ey i
in the corresponding semiclassical thef2@,21]. 06 : : : : ,
We therefore study a multiply-kicked rotor wit kicks: 1}(b) N=201,v=0.9 .
U@ =B(a;)GB(a,)G...B(ay)G where thew, are spaced far
apart; we choosey=(jM +k) g, wherek=1,...,M, and the - UBF e, 1
index j labels independent spectra as above. We find that the W 06 J
universal long-range results foB=2 are realized when
M=5 for y=0.9 (see Fig. 2 forM=10). It is interesting 04 T
to note thatU® for y=0 also yields theB=2 results 02 L

because the product is not symmetric. TBe1 results 0 40 80 120 160 200
are recovered for the symmetric productU® r
=B(a)G...B(ay)GB(ay-1)G...B(a;)G; Fig. 2 also shows FIG. 3. 3r) vs r for N=201M=1,10, and(a) =0, (b) y
results for this product witiM=10. The short-range fluctua- =0.9. The solid lines irta), (b) correspond to the circular-ensemble
tions are not affected by the product operations describegksult(20) with 8=1,2 respectively. The dashed lines correspond to
above. This should be contrasted with the operatothe short-range theory, vit=27r in (20).
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dimensiongl B=1 circular ensemble have the same statisticdirm basis for the utility of(23) in experiments on quantum
as that of the3=4 ensemble. We have confirmed the validity dots.
of this for multiply-kicked rotors.

It is natural to describe quantum transport via scattering V. CONCLUSION

matrices(say, U) which are modeled by circular ensembles. We h died the th ] i
Then the conductance is given =X, ,|Upnd? with m e avestu led the theory gl ong\]/;/rar;]ge spelctr% ugtura]l-
=1,2,....,N; and n=N;+1,...,N, where N, and Ny(=N tions in random-matrix ensembles. We have elucidated the

extent of universality for one-band and multiple-band spec-

—-N,) are, respectively, the number of incoming and outgoin . :
) P : y i~ g. . 9 %ra, and its relevance for conductance fluctuations. Further,
channels. The circular-ensemble prediction for its variance is

we have explored the analogous long-range correlations in

(with 7=2/5) the eigenvalue spectra of circular ensembles and quantum-
kicked rotors. We find that singly-kicked rotors do not ex-
NiNo(N; =1+ ) (N, -1+ g . . .
var(g) = NiN (N, (N, 7 (23)  hibit universal long-range correlations. However, in

2,
(N=2+7)(N-1+29)(N-1+7) multiply-kicked rotors, akin to multiple scattering in quan-

tum transport problems, universal long-range correlations are
recovered. In these systems, the circular-ensemble predic-
tions for conductance fluctuations are explicitly verified for
both the small and large number of channels.

which yields the above resui8g)™* for N;=N,>1; se€{7],
and references therein. We have verifi@®) for multiply-
kicked rotor operator&2UVG Y2 andU@ with both large
and small number of channdls However, for small values
of N (=3 for kicked rotorg, the number of kicks needed for
good agreement is highde.g., M=50). Our kicked-rotor
calculations, along with earlier worf®,10], thus provide a S.K. thanks CSIR, India for financial support.
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